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Abstract

“Docking” is a major tool in in-silico drug design and the method has been extensively
developed. Simultaneously, computer hardware has been developed quite a lot.
Nevertheless, poor performance of the docking methods are well known and its
reason is not explained so far.

We have tried to understand the situation and reached a plausible explanation. The
direct output of MO or MD calculation for a binding energy between drug and protein,
is in a range of 40-60 kcal/mol. We subtract a constant to make calculated value
comparable with experimentally observed value, 8-12 kcal/mol. On the other hand,
drug activity measure, Kd, is defined as kT In Kd = DG. And AG = AH -TAS. MO and
MD calculate only AH term and their output of binding energy either neglects TAS
term or assumes TAS is similar for all compounds. The reason of the poor performance
of docking methods seems to lie in this process.

Contribution of entropy must be significant if we consider released solvation water
upon binding and restricted freedom of bound small molecules. We assume the
observed binding energy of -9 kcal/mol must be the sum of -6 kcal/mol and -3
kcal/mol for AH and —TAS, respectively. Although you can not judge 1 uM activity
based on calculated binding energy in a range over -6 kcal/mol, MO and MD programs
output -9 kcal/mol after artificial adjustment. Consequently, the selected compounds
by docking methods do not show activity in the most cases.

Interprotein has developed a system which consider entropy contribution and
concentrates compounds with high total energy into higher rank. It has been
successfully applied for 20 PPI targets and 10 enzyme targets. Details in Runx1-CBFf
target is shown.



Conclusion

The reason why elaborate calculations on best
supercomputers do not succeed in finding active
compounds is explained by the lack of considerations on
“Entropy”.

We assume correct active binding structures exist among
top 50,000 computer output, but huge amount of false
positives hide correct structures.

Consideration on entropy will greatly help to find active
structures and our INTENDD ® system have continuous
success on 10 enzymes and 20 PPI targets.

Example on RUNX1-CBFb target is shown in detalil.



Docking problem | High false positive rate

In MD-based docking methods, binding energy is AH and most of
the proposed compounds do not show activity. This leads to very
high false-positive rate.
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Docking problem | After removal of assumed -TAS

In MD-based docking methods, binding energy, AH is adjusted to
observed AG. When entropy has “PPush” etfect and subtracted from
AH, remaining AH is small and can not be a measure of activity.
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Kinase ATP sites are easy targets

ATP binding site of kinase is a flat pocket which accepts
compounds with similar shape and size. Therefore, the
contribution of entropy is similar among compounds. This is why
the AH calculation can indicate hit compounds and population of
hit in top group is high.
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The real landscape of binding energy | AS “Push” case

* Activity Kd as AG=kT In Kd

* Binding Energy AG=AH-TAS

* Docking calculation can estimate most of AH.

* But AS contribution is more significant than was expected.
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Alternative Case | Case of AS “Pull”

ITC measurements sometimes show negative entropy etfect in drug-
protein binding. Entropy effect is quite big and most compounds
loose binding atfinity because of decreased entropy.
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What our SBDD system, INTENDD® does.

INTENDD® takes entropy into account, bringing promising
compounds with big entropy to higher ranks.
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Strategy for Runx1 Inhibitor
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Relationship between docking score and activity

IC;, for Runx1/CBF binding to DNA (umol/L)
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There is no linear relationship between MD-based docking score and activity. For instance,
the lower right field contains comps with high docking scores and low activities, while the
upper left field contains comps with low docking scores and high activities. INTENDD®
can detect highly active comps even among comps with low docking scores (131). 131
analogs showed a good SAR, resulting in the production of many highly active comps

(IC50 < 1uM) in second screening. ”



Practical example | Runx1-CBFf interaction Inhibitor

Secondary hits (IC;, < 10 uM) €= Primary hits (IC, < 100 uM)

. 26 of 142~ (hit rate: 18%) at the concentration of 100 uM
. 7 of 142 (hit rate: 5%) at the concentration of 10 uM
. 3 of 142 (hit rate: 2%) at the concentration of 1 yM

* Number of compounds tested following proposal by INTENDD®/SBSG®
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Number of hit compounds that inhibit Runx1/CBFB-DNA binding over 50%
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1) Inhibition of Runx1/CBFf3-DNA
binding by compounds was assessed
by SPR.

2) Binding affinity of compounds to
Runx1 was determined by MST.

3) ND: not determined.

055 36 5.5 077

0.065

ﬁn--ﬁﬁﬁém

Hit rate in secondary screening (%) 100 - 0 O 100 60 5.9 57 46
s 73 1134 11747 126 4 131/
=2 analogue analogues analogues analogue analogues
= 107—
£
c
£
<
zZ
&)
210
1.0
&) 0.38
X 0.33 033’
=)
2
s
20.1 -
Q 1 123456 123456 1 12345678 91011121314151617181920



